
Using Large Language
Models to Improve Open-

Source IP: Automated Verilog
to TL-Verilog Coversion

Project Information
Organization: FOSSi Foundation

Project: Using AI to Improve Open-source IP

Mentors: Steve Hoover

Repo:https://github.com/stevehoover/conversion-to-TLV

Duration: 350 hours.

Language/Tools : Verilog, Python, TL-Verilog.

https://github.com/stevehoover/conversion-to-TLV

Proposal
Abstract
This project seeks to develop an intelligent framework for converting Verilog code into
Transaction-Level Verilog (TL-Verilog) using Large Language Models (LLMs). The
framework will facilitate a semi-automated conversion process, leveraging AI to identify
and transform design patterns efficiently. To ensure functional equivalence between the
original and converted code, formal verification will be integrated at each stage of the
conversion. By combining AI-driven automation with rigorous verification, the project
aims to streamline the transition from Verilog to TL-Verilog, reducing errors, improving
efficiency, and enhancing the usability of open-source hardware IPs. This initiative will
empower hardware designers to more easily adopt advanced, high-level design
methodologies while maintaining the integrity and correctness of their IPs.

Introduction
Hardware Description Languages (HDLs), particularly Verilog, are fundamental in
digital circuit design. However, as designs grow in complexity, traditional Verilog
becomes difficult to maintain and modify. Transaction-Level Verilog (TL-Verilog) offers
a higher level of abstraction, improving code organization, maintainability, and
verification. Despite its advantages, converting Verilog to TL-Verilog is a time-
consuming and error-prone process. This project aims to automate the transformation
using Large Language Models (LLMs), incorporating formal verification at each step to
ensure functional equivalence between the original and converted code. By reducing
manual intervention and potential errors, this approach will enhance the overall efficiency
of design workflows. The goal is to make the transition to TL-Verilog more accessible,
facilitating easier adoption of modern design methodologies in open-source hardware
projects.

Background
The hardware design community has built a vast repository of open-source Verilog code
over the years. While these designs are functionally robust, they often suffer from
common issues, including:

• Verbose and repetitive code structures

• Complex clock and reset logic

• Difficult-to-maintain pipeline stages

• Limited parameterization capabilities

• Challenging verification processes

Transaction-Level Verilog (TL-Verilog) addresses many of these challenges by
introducing higher-level abstractions, streamlining pipeline specifications, and improving
the overall structural organization of the code. While TL-Verilog enhances design
maintainability and verification, the process of manually converting legacy Verilog code
into TL-Verilog remains time-consuming and prone to errors. Automating this
conversion could significantly improve workflow efficiency and reduce human error,
paving the way for broader adoption of TL-Verilog in the open-source hardware
community.

Problem Statement
The challenge lies in creating an efficient, reliable method to convert existing Verilog
code to TL-Verilog while ensuring:

• Functional equivalence between original and converted code

• Preservation of design intent and comments

• Optimal use of TL-Verilog features

• Systematic verification at each conversion step

Proposed Solution
The project harnesses the power of Large Language Models (LLMs) to develop a semi-
automated conversion framework that:

I. Breaks down the conversion process into incremental, verifiable steps:

• Systematic module-by-module conversion

• Step-by-step transformation of design elements

• Clear checkpoints for verification

• Rollback capabilities for error recovery

II. Utilizes AI to assist in transforming Verilog code to TL-Verilog:

• Intelligent code structure analysis

• Pattern recognition for common design elements

• Automated comment preservation and enhancement

• Suggestion of TL-Verilog optimizations

III. Integrates formal verification to ensure functional correctness at each step:

• Equivalence checking between versions

• Property verification maintenance

• Systematic test coverage analysis

• Verification report generation

IV. Tracks conversion history to enable continuous improvements:

• Detailed conversion step logging

• Success and failure pattern analysis

• Version control integration

V. Provides comprehensive documentation and tutorials:

• Example conversions repository
• Code snippets library
• Common design pattern catalog

VI. Establishes contribution guidelines:

• Code style standards
• Documentation requirements
• Testing procedures
• Review process
• Issue reporting templates

This approach not only simplifies the conversion process but also generates valuable
training data for future AI-assisted hardware design tools. By combining human expertise
with AI capabilities, we aim to make the transition from Verilog to TL-Verilog more
efficient, accessible, and reliable.

Project Objectives
Technical Goals

➢ Develop a reliable and efficient conversion framework for Verilog to TL-Verilog.
➢ Implement comprehensive verification methods to ensure functional correctness at

each step.
➢ Build a library of verified conversions for both basic and advanced hardware

designs.
➢ Document common conversion patterns and best practices for future use.

Community Benefits

➢ Improve the quality and maintainability of existing open-source hardware designs.
➢ Provide educational resources to promote the adoption of TL-Verilog in the

hardware design community.
➢ Create valuable training data to enhance AI-assisted hardware design tools.
➢ Foster collaboration and knowledge-sharing between traditional Verilog and

modern TL-Verilog communities.
Long-term Impact

➢ Accelerate the transition to modern, high-level HDL practices in hardware design
➢ Reduce the ongoing maintenance burden of complex hardware designs
➢ Enable more flexible and efficient design modifications and updates
➢ Enhance the verification process for digital hardware, ensuring higher reliability

and correctness

Technical Details:
Core Components & Tools:
 Primary Script and Files:

Covert.py:
The convert.py script is the core engine driving the Verilog-to-TL-Verilog conversion
process. It identifies target Verilog modules, applies step-by-step transformations, and
ensures correctness through formal verification using SymbiYosys. The script maintains
conversation context with the LLM via JSON-based message files, capturing each
refactoring step in structured history directories for tracking and rollback. It also manages

file organization, creates directory structures, and coordinates interactions between
different conversion components, ensuring a structured and traceable transformation
workflow.

My improvements focus on Modularity, Performance, and reliability while preserving the
existing workflow:

 Modular Architecture for Maintainability:

Refactor the script into distinct components, such as preprocessing,
transformation, and verification, for better code organization, while improving
extensibility to allow future enhancements without disrupting core functionality.

 Advanced Error Handling:

Implement detailed debugging messages that offer meaningful insights instead of
generic error outputs, and categorize errors, such as parsing issues, LLM
misinterpretations, and verification failures, to simplify troubleshooting.

 Intelligent Pattern Recognition:

Detect and optimize common Verilog structures, such as state machines, counters,
and pipelines, by applying targeted transformation strategies rather than relying on
generic rule-based conversions.

 Performance Optimizations:

Reduce LLM API calls by optimizing prompt efficiency and context handling,
while implementing smarter resource management to minimize redundant
computations.

 Enhanced Documentation & Explainability:

Generate step-by-step transformation logs that explain the reasoning behind each
modification, offering users clear insights into the AI’s decision-making process
and enhancing transparency.

prompt.json:
The prompts.json file serves as the recipe book for Verilog-to-TL-Verilog conversion,
containing structured prompts that guide the LLM through refactoring and structural
transformations. Each prompt includes an ID, description, and detailed instructions,
encoding expert knowledge into an executable format.

Proposed enhancements focus on Advance Prompt Engineering to improve accuracy and
efficiency. Key improvements include:

• Pattern-Specific Templates: Recognizing common hardware structures (state
machines, pipelines, memory interfaces) and applying optimized transformation
strategies.

• Improved Context Management: Carrying forward critical details about module
structure, signal relationships, and design intent to reduce redundancy and enhance
transformation coherence.

• Verification-Aware Prompts: Embedding guidance for preserving functionality,
signal timing, and edge case handling to improve formal verification success rates.

• Adaptive Conversion Paths: Moving beyond a fixed sequence, enabling dynamic
prompt selection based on the module’s characteristics for more tailored
transformations.

Verification Tools:
The project leverages industry-standard formal verification tools to ensure correctness
throughout the Verilog to TL-Verilog conversion process. This robust verification
framework is essential for maintaining functional equivalence between original and
transformed designs.

A)SymbiYosys
SymbiYosys (SBY) serves as my primary formal verification engine, providing a critical
safety net for the conversion process. This powerful tool enables us to mathematically
prove that my transformations preserve the original design's functionality. In my
implementation, SymbiYosys is configured through carefully crafted fev.sby files that
specify verification parameters. These configurations define the modules to compare,
verification bounds, and proof strategies.

The tool performs exhaustive state space exploration to ensure that for all possible inputs,
the original and converted designs produce identical outputs under the same conditions.
For complex conversions, SymbiYosys helps identify subtle behavioral differences that
might be missed through traditional simulation. When verification fails, it generates
counter examples that pinpoint exactly where and how the designs diverge, enabling
precise error correction.

B)Yosys
Yosys forms the synthesis backbone of the verification framework. This open-source
synthesis tool processes RTL designs and generates netlists that represent the actual
hardware implementation. In the conversion pipeline, Yosys performs several crucial
functions:First, it synthesizes both the original Verilog and the transformed code,
converting high-level descriptions into optimized gate-level representations. This step
normalizes different coding styles, making equivalence checking more reliable.Second,
Yosys enables advanced optimization techniques that can identify functionally equivalent
circuits despite significant structural differences. This is particularly valuable when
converting to TL-Verilog, as the transformed code often employs different structural
patterns to achieve the same functionality.

Integration in to Conversion Pipeline
The framework integrates these tools seamlessly through the convert.py script. After each
transformation step, the script automatically:

1. Generates appropriate verification scripts
2. Invokes SymbiYosys with optimal configuration
3. Analyzes verification results
4. Provides detailed feedback on success or failure
This integration ensures that every transformation is verified, maintaining a continuous
chain of correctness from the original Verilog to the final TL-Verilog implementation.By
leveraging these powerful verification tools, the project delivers not just code
transformation but guaranteed functional equivalence, a critical requirement for hardware
design. This verification-first approach distinguishes my work from simple syntax
translators and ensures that converted designs can be trusted in real-world applications.

Tools Integration:
SandPiper Integration:
SandPiper plays a crucial role in Verilog to TL-Verilog conversion framework,
transforming TL-Verilog descriptions into synthesizable SystemVerilog. It simplifies
pipeline stage management by automatically generating register structures and timing
logic while also centralizing clock and reset definitions, reducing complexity.

To enhance its integration,I propose leveraging SandPiper's parsing capabilities earlier in
the conversion process. This will allow better utilization of TL-Verilog features such as
pipelined timing abstractions and hierarchical scopes, resulting in more optimized code.

M5 Preprocessing:
M5 extends the system's capabilities through macro-based preprocessing, enabling
flexible, parameterized code generation. It adapts prompt templates dynamically and
ensures uniform conversion quality by handling repetitive code structures efficiently.

To improve M5,I propose developing a conversion-specific macro library that encodes
expert transformation patterns for consistent, high-quality conversions. Additionally, we
aim to implement an intelligent feedback loop between verification results and M5
preprocessing, allowing automatic refinement of templates based on detected issues,
reducing manual intervention.

These enhancements will significantly boost conversion quality and automation, making
the process more robust and efficient.

Example Circuits and Verification Strategy:
To demonstrate the effectiveness of Verilog to TL-Verilog conversion framework,I will
be taking a structured approach that begins with simple digital circuits and gradually
progresses to more complex designs. This ensures a strong foundation, allowing us to
validate core conversion capabilities while refining verification techniques and creating
reusable transformation patterns.

I will begin with fundamental combinational and sequential circuits—basic yet essential
components in digital design. These examples help establish verification patterns,
optimize transformation templates, and ensure the framework handles a variety of design
structures correctly. By starting with smaller circuits, we can build confidence in the
conversion process before moving on to larger and more intricate designs.

The implementation follows a clear workflow. First, we select representative circuits
from open-source repositories and apply my conversion framework while documenting
each transformation step. This not only helps in tracking progress but also creates a
knowledge base for future optimizations. Once the initial conversion is complete, we
analyze common patterns in the designs and refine transformation templates accordingly.
A key focus is on optimizing clock and reset handling, as well as ensuring efficient
pipeline integration, especially when dealing with TL-Verilog’s pipeline abstraction.

Since verification is critical, I will incorporate multiple validation techniques. My
approach includes developing comprehensive test cases, implementing formal property
checks with SymbiYosys, and establishing reusable verification patterns that can be
applied across different designs. This allows us to systematically prove functional
equivalence between the original Verilog and the converted TL-Verilog implementations.

Beyond just correctness, these initial conversions serve an educational purpose. By
showcasing fundamental transformation patterns, they provide valuable learning
resources for new users. They also act as modular building blocks, helping us scale the
framework for more sophisticated circuits while ensuring consistency in transformation
quality.

Looking ahead, this structured foundation enables us to extend the framework to more
complex designs. By supporting modular composition, improving pattern recognition,
and enhancing automation, we are paving the way for a highly adaptable and efficient
Verilog-to-TL-Verilog conversion system. Through continuous refinement and
validation, we aim to make this framework not just a conversion tool but a reliable
methodology for transitioning to TL-Verilog with confidence.

WARP-V Integration Strategy:

WARP-V, a well-known open-source RISC-V implementation in TL-Verilog, serves as
an ideal case study for showcasing the framework’s ability to transform complex
processor designs. By converting traditional RISC-V implementations in Verilog into
TL-Verilog, we aim to demonstrate how TL-Verilog’s structured abstractions improve
clarity, maintainability, and performance in modern processor architectures.

Integration Approach
My strategy focuses on adapting existing RISC-V implementations to TL-Verilog in a
way that highlights key advantages in pipeline structuring, control logic, and memory
interfacing.

1. Pipeline Structure Conversion
➢ Transform traditional Verilog pipeline stages into TL-Verilog’s transaction-based

abstractions.

➢ Simplify pipeline control flow and improve design readability.

➢ Optimize timing relationships while demonstrating pipeline stage retiming
capabilities.

➢ This transformation will serve as a valuable reference for engineers and
researchers looking to modernize processor design with TL-Verilog.

2. Control Logic Transformation
➢ Convert complex state machines into TL-Verilog’s transaction-based model,

reducing design complexity.

➢ Optimize instruction decode logic for improved clarity and efficiency.

➢ Adapt branch prediction and exception handling for better modularity.

By illustrating these changes, we provide a scalable approach that can be applied to other
complex digital architectures, making processor design more accessible.

 Figure : Proposed Pipeling in the Project

3. Memory Interface Adaptation
➢ Restructure memory access protocols to align with TL-Verilog’s efficient design

philosophy.

➢ Transform cache controller logic for optimized performance.

➢ Streamline memory pipeline integration, reducing design overhead.

These improvements will not only demonstrate TL-Verilog’s advantages but also create
reusable transformation templates, helping future developers accelerate their own
conversions.

Impact Prospects:
Integrating WARP-V into framework establishes a strong foundation for adapting
complex processors to TL-Verilog. It provides reusable templates, best practices, and
insights that simplify Verilog-to-TL-Verilog transitions. By demonstrating TL-Verilog’s
advantages in large-scale designs, this work encourages wider adoption, fostering
structured and maintainable hardware development. Additionally, it serves as a valuable
educational resource while paving the way for future adaptations of other RISC-V cores
and advanced digital architectures.

Makerchip Circuit Integration Plan
The framework will leverage Makerchip’s ecosystem to demonstrate robust Verilog-to-
TL-Verilog conversions. By focusing on well-established examples, I will bridge
traditional Verilog implementations with modern TL-Verilog designs.

Standard Example Conversion: I'll convert key digital design examples, including
sequential logic, timing-critical circuits, interface protocols, and arithmetic units. These
conversions will serve as reference implementations, ensuring functional correctness and
improved clarity.

Pipeline Design Transformation: TL-Verilog’s timing abstraction will enhance pipeline
conversions, enabling multi-stage data processing, flexible retiming, throughput
optimization, and clock domain management.

State Machine Evolution: I'll refine state machines like protocol controllers, sequence
generators, and event handlers, showcasing TL-Verilog’s improved state transition
representation while maintaining precise timing.

Memory Controller Enhancement: Complex memory interfaces, including cache
controllers, arbitration, and buffer management, will be converted to TL-Verilog,
demonstrating its ability to simplify timing relationships without losing accuracy.

Expected Impact: This integration will establish a verified library of conversions, define
best practices, and provide learning resources. It will also showcase AI-assisted
automation in hardware design, emphasizing TL-Verilog’s advantages in clarity,
efficiency, and maintainability.

Conversion Process Enhancement
A seamless and efficient conversion process is key to ensuring accuracy and
maintainability. My approach focuses on refining convert.py, strengthening verification,
and improving file management to create a well-documented and reliable transformation
pipeline.

Improvements in Python Script:
To make convert.py more effective, I will introduce several enhancements. First, error
handling will be significantly improved to detect issues early and provide better recovery
mechanisms. The script will also feature real-time progress tracking, offering clear
insights into each step of the conversion.

Beyond that, I work on intelligent pattern recognition, allowing the tool to better
understand common Verilog structures and adapt accordingly. Managing context across
multiple transformation steps will also be more efficient, ensuring smoother transitions
from one stage to the next. Lastly, automated documentation will be integrated, keeping a
structured record of every change without requiring manual effort.

Verification Flow
Ensuring correctness is just as important as performing the conversion itself. The
verification flow will include systematic equivalence checking, ensuring that the
transformed TL-Verilog version functions exactly as the original Verilog design. The
process will also generate detailed reports, making it easy to identify discrepancies or
issues.

To further strengthen validation, I will introduce automated test case generation, allowing
converted designs to be tested without manual intervention. I will also implement
property preservation checks, ensuring key design constraints remain intact throughout
the transformation. If any issues arise, the system will provide detailed error analysis
along with suggestions for fixing them.

File Management:
A well-organized file management system is crucial for tracking changes and maintaining
a clear history of transformations. My approach includes version tracking, where every
transformation is logged, along with documentation on the reasoning behind key design
choices. Intermediate states will be preserved, ensuring that no critical information is
lost.To keep things structured, we are introducing a history management system that
records every conversion step, tracks how patterns were recognized and applied, and
maintains a log of key decision points. Alongside this, a checkpoint system will be
implemented, automatically saving critical stages of the conversion while also allowing
users to define their own checkpoints.

 Figure : Proposed Conversion System

Mistakes and unexpected challenges are inevitable, so rollback capabilities will also be
included. If needed, users can revert to previous states, compare different conversion
attempts, and choose the most suitable version. To simplify debugging, the system will
even suggest potential recovery paths.

Together, these improvements will make the entire conversion process more transparent,
reliable, and easy to navigate, ensuring that every transformation is well-documented and
easy to revisit when needed.

Challenges to Look After:
Developing a seamless Verilog-to-TL-Verilog conversion framework presents a set of
significant challenges, primarily in three areas: tool integration, code transformation, and
verification. Each stage in the conversion pipeline must work cohesively, ensuring that
the final TL-Verilog output is not only functionally equivalent to the original Verilog
design but also optimized for clarity and efficiency.

Tool Integration
A fundamental challenge is ensuring smooth interaction between various tools involved
in the framework. M5 preprocessing, the LLM-based transformation, SandPiper for TL-
Verilog processing, and formal verification tools all have distinct functionalities, and
coordinating their operation is crucial.

• Tool Chain Coordination: Each tool has unique input and output formats, and
managing a consistent data flow between them requires careful synchronization.
File format mismatches, incorrect configurations, or missing dependencies can
cause failures at various stages. A structured approach is required to ensure that
preprocessing, transformation, and verification steps align seamlessly.

• Processing Pipeline Management: The preprocessing and transformation stages
must handle tool-specific syntax, intermediate representations, and conversion
logic in a structured sequence. Template processing, pattern recognition, and
syntax adaptation should happen in a well-defined order to ensure the correct flow
of information.

Without a carefully designed pipeline, inconsistencies could arise in intermediate
representations, affecting the final TL-Verilog output. Thus, robust integration
mechanisms and error-handling strategies are essential for a smooth conversion
experience.

Code Transformation
The transition from Verilog to TL-Verilog is not just about changing syntax; it involves
fundamental shifts in how designs are structured. Pipeline handling, clock/reset
management, and state machine conversions require deep transformations while ensuring
functional equivalence.

• Pipeline Structure Analysis: Traditional Verilog designs often have implicit
pipeline stages scattered throughout the code, requiring careful identification. The
challenge lies in determining optimal stage boundaries, preserving timing
relationships, and translating the pipeline logic into TL-Verilog's structured @
notation. Improper stage handling can lead to incorrect execution timing, affecting
the final design’s performance.

• Clock and Reset Management: Unlike Verilog, where clock and reset signals are
explicitly defined within every sequential block, TL-Verilog allows a more
centralized approach. The challenge is to retain the original design’s clock
domains, reset handling, and timing constraints while streamlining them in TL-
Verilog. If not handled carefully, clock mismatches or unintended domain
crossings could introduce synchronization issues.

• State Machine Transformation: Many Verilog designs rely on complex finite-
state machines (FSMs) with intricate transition conditions and control flow
dependencies. Converting these into TL-Verilog’s transaction-based modeling
requires restructuring them while preserving the original behavior. Ensuring that
state transitions remain functionally equivalent without introducing unnecessary
complexity is crucial for correctness.

This phase demands a balance between automation and accuracy—automated
transformations must be precise enough to maintain functionality, while also leveraging
TL-Verilog’s advantages to enhance readability and modularity.

Verification Challenges
Once the code is transformed, ensuring correctness through verification is essential. Even
the slightest timing deviation could lead to incorrect execution, making thorough
validation a non-negotiable step in the framework.

• Functional Equivalence: The converted TL-Verilog design must retain the
original behavior, including its control sequences, data paths, and pipeline
execution timing. Formal verification methods will be used to check whether
transformations introduce or remove unintended behaviors.

• Property Verification: Many Verilog designs include assertions and timing
constraints to ensure correctness. The challenge here is to translate these properties
into TL-Verilog and validate them using SymbiYosys (SBY) and Yosys synthesis
verification. Protocol compliance, safety properties, and functional correctness
must be rigorously checked.

• Quality Assurance: A comprehensive test suite is required to detect potential
errors in transformed designs. This includes edge case detection, error
identification, and performance validation to ensure that optimizations do not
introduce unintended side effects. Establishing a feedback loop—where
verification failures refine preprocessing templates and transformation rules—will
allow the framework to continuously improve over time.

My Approach:
To tackle these challenges, my approach is rooted in systematic problem decomposition,
incremental solution development, and robust error handling. Instead of attempting a one-
size-fits-all transformation, we will break down the process into manageable tasks,
refining conversion strategies iteratively.

A well-defined debugging mechanism will be crucial, ensuring that automated checks
detect issues early, rather than letting them propagate to later stages. Additionally, clear
documentation of conversion rules and best practices will serve as a reference, making
the framework reproducible and adaptable for future enhancements.

By methodically addressing these challenges, we aim to create a conversion framework
that not only maintains design integrity but also enhances code quality, modularity, and
scalability. The end goal is not just transformation, but an intelligent, automated system
capable of producing high-quality TL-Verilog with minimal manual intervention.

Approach Chart Diagrams:

Figure 2:My Project Approach

 Figure 1: Initial Project Approach

Schedule of Deliverables:

Before Community Bonding
✔ The time period from April 9- May 8 is the pre - community bonding phase.
✔ Objective is to push a good number of Pull Requests to the Conversion to TLV
repo.
✔ Get Familiar with the Project Work flow, Verification Concepts, Dependencies
Installation.

Community Bonding Period
 May 8 - June 1

✔ Get familiar with mentors, community, and existing tools.

✔ Study conversion methodologies and formal verification.

✔ Set up development, testing, and version control environment.

✔ Identify key challenges in Verilog-to-TL-Verilog conversion.

Week 1 (May 8 – May 15)

✔ Connect with mentors and the Community.

✔ Review the Project Scope, Goals, and Expected Outcomes.

✔ Set up and test the development environment (Python, Yosys, SymbiYosys,
Makerchip).

 Figure : Brief Schedule

✔ Study the structure of convert.py and fev.sby.

Week 2 (May 16 – May 23)

✔ Analyse existing conversion patterns in Verilog and TL-Verilog.

✔ Review WARP-V and Makerchip examples for pipeline conversion strategies.

✔ Document the challenges in conversion (clock domain handling, pipeline
structure,statemachines).

✔ Identify initial circuits for conversion.

Week 3 (May 24 – June 1)

✔ Plan the project roadmap with deliverables and milestones.

✔ Define testing and validation methodologies.

✔ Set up formal verification tools (SymbiYosys, property checking).

✔ Finalize the approach for pipeline transformation and state machine conversion.

Coding Period - Phase 1
 June 2 – July 14 (Midterm Evaluation: July 14 - July 18)

Developing the core Verilog-to-TL-Verilog conversion pipeline and establish
initial verification flow.

Week 4 – 5 (June 2 - June 16)

✔ Implement the basic conversion pipeline (convert.py enhancements).

✔ Add core pattern recognition for Verilog constructs.

✔ Develop first combinational circuit conversions with TL-Verilog.
 Implement file tracking and version control for conversion steps.

Week 6 - 7(June 17 - July 1)

✔ Extend support for sequential circuits and basic pipelining.

✔ Establish a formal verification framework using SymbiYosys.

✔ Create automated test case generation for verification.

✔ Develop a rollback mechanism for debugging failed transformations.

Week (July 2 - July 14)

✔ Conduct debugging and optimize transformation logic.

✔ Document Phase 1 progress and prepare midterm evaluation report.

✔ Gather mentor feedback for next steps.

Coding Period - Phase 2
July 14 - August 25

Extend the framework to handle complex circuits, pipelines, and advanced optimizations.

Week 9 - 10(July 14 - July 28)

✔ Implement pipeline optimization techniques for efficient TL-Verilog conversion.

✔ Improve state machine transformation for control logic.

✔ Develop memory interface handling for complex designs.

✔ Test and validate against a set of larger open-source circuits.

Week 11 - 12(July 29 - August 11)

✔ Enhance error detection and reporting mechanisms.

✔ Develop template-based transformation for reusable conversions.

✔ Optimize clock domain handling and reset logic.

✔ Perform stress testing with complex TL-Verilog designs.

Week 13 - 14(August 12 - August 25)

✔ Finalize WARP-V integration as a proof of concept.

✔ Complete documentation and user guides.

✔ Conduct a final round of verification and debugging.

✔ Prepare for the final submission.

Final Evaluation Period
August 25 - September 1

✔ Final testing and performance optimizations.

✔ Prepare and submit the final work product.

✔ Submit final project report and evaluation.

Extended Coding Period
September 1 - November 9
For additional improvements:

 Further optimizations in transformation logic.

 Additional formal verification techniques.

 Documentation enhancements for long-term maintainability.

Contributions and pull requests to the project
1. Pull Request: #04- Enhanced initialization script with comprehensive tool installation
and dependency management guide.

State: Merged.
2. Pull Request: #06- Add examples and tutorials for TL-Verilog conversion: - Basic
examples (D flip-flop, counter, mux) - Intermediate examples (shift register, traffic light)
- Tutorials (getting started, common patterns, troubleshooting)

State: Closed.
3. Pull Request: #09- Add reference to conversion examples repository

State: Merged.

Why This Project?
I am deeply passionate about advancing hardware description languages and making
digital design more efficient and accessible. The Verilog-to-TL-Verilog conversion
project aligns perfectly with my interests, offering a unique opportunity to merge
traditional hardware design with modern AI-driven automation.

Technical Innovation
This project presents an exciting challenge in developing an intelligent conversion
framework powered by large language models (LLMs). It involves working with
advanced AI techniques to transform and optimize HDL code, ensuring accuracy and
efficiency in the process. By tackling complex code transformations and verification
strategies, I will gain hands-on experience in building scalable and maintainable solutions
that can benefit the broader hardware design community.

https://github.com/stevehoover/conversion-to-TLV/pull/9
https://github.com/stevehoover/conversion-to-TLV/pull/6
https://github.com/stevehoover/conversion-to-TLV/pull/4

Community Impact
Simplifying Verilog-to-TL-Verilog conversion can significantly benefit hardware
designers, researchers, and students by making existing designs easier to maintain and
understand. It reduces barriers to adopting modern HDL practices, fostering a more
accessible learning environment. Additionally, contributing to open-source hardware
development ensures that valuable educational resources and improved workflows are
available to the community.

Learning Opportunity
This project provides a strong foundation for expanding my knowledge in hardware
description languages, formal verification techniques, and AI-assisted code refactoring.
By engaging in open-source collaboration, I will gain insights into best practices for
developing high-quality software tools while deepening my understanding of modern
digital design methodologies.

Long-Term Vision
Beyond its immediate goals, this project represents a step toward shaping the future of
hardware design automation. The tools and methodologies developed here can serve as a
foundation for future innovations in HDL transformation. Establishing best practices for
Verilog-to-TL-Verilog conversion and fostering collaboration between traditional and
modern hardware communities can lead to long-lasting improvements in digital design
workflows.

Personal Growth
This project aligns with my long-term career goals by allowing me to work alongside
experienced mentors and contribute meaningfully to open-source development. It
provides a unique opportunity to refine my problem-solving and project management
skills while bridging the gap between hardware and software domains. Through this
experience, I aim to strengthen my expertise in digital design and AI-driven automation,
positioning myself for future contributions to the field.

Biographical Information
Educational background
I am a third-year undergraduate pursuing a B.Tech in Electronics and Communication
Engineering (ECE) at Rajiv Gandhi University of Knowledge Technologies (RGUKT),
Ongole Campus, with an academic percentage of 87%. Throughout my academic
journey, I have maintained a strong academic record and actively engaged in both
technical and extracurricular activities. My coursework and projects have given me
hands-on experience with core concepts in digital design, embedded systems, and circuit
simulations. I am a member of my college's innovation club, IDEA Forge, where I
collaborate on creative technological solutions. Additionally, I am an NSS volunteer and
a Bharat Scouts and Guides member, actively participating in community service and
leadership initiatives. Beyond academics, I have a keen interest in sports, particularly
football, badminton, and chess, which help me stay active and enhance my strategic
thinking.

Technical Interests
I have a deep interest in hardware design, digital circuits, and open-source contributions.
My passion lies in exploring Verilog and TL-Verilog, particularly in the context of AI-
assisted automation for hardware refactoring. I am also keen on formal verification
techniques, ensuring correctness and reliability in hardware designs.I also working on
optimization, and verification in Verilog. Additionally, I have experience in CPU
benchmarking, FPGA-based projects, MATLAB simulations, and digital protocol
implementations. Most importantly, “Building a RISC-V CPU Core”,course of Mr.Steve
Hoover in Edx Platform,earned me alot of interest in TL-verilog and Makerchip.

Notable Projects
• DIR-V Systems Hackathon Project – Optimized CoreMark CPU benchmarks for

the SHAKTI processor, focusing on memory optimizations, compiler
enhancements, and reducing execution time.

• Gym Trainer Chatbot using LLMs – Built a smart AI chatbot leveraging Large
Language Models (LLMs) to provide personalized fitness recommendations and
assist users in workout routines.

• UART Protocol Implementation (Verilog) – Developed and verified a Universal
Asynchronous Receiver-Transmitter (UART) protocol in Verilog, ensuring
reliable serial communication.

• Asynchronous FIFO on Basys-3 Board – Designed and implemented an
asynchronous FIFO on an FPGA (Basys-3), ensuring smooth clock domain
crossing for high-speed data transfer.

• MATLAB-Based Voting Machine – Designed and implemented a simulation-
based voting system with optimized image handling for improved performance.

Other open-source contributions
As part of the Research Migration Project at FOSSEE, IIT Bombay, I worked on eSim,
an open-source EDA tool for analog circuit simulation that integrates KiCad, LTspice,
and other embedded tools. My contribution involved designing and simulating wave
generators, specifically a sawtooth waveform generator and a triangular waveform
generator. The project was successfully completed and submitted, demonstrating my
proficiency in circuit simulation and my ability to work with open-source hardware
design tools.

Communication
Working Hours -
I am flexible with my timings and can work dedicatedly for hours together. I would like
to work during the daytime as I find myself more productive during the early hours. Also,
I will make sure that GSoC will be my only major commitment this summer and that I
give it my full attention.

Communication preferences -
I am most comfortable with the Google meet or Zoom Meetings but can adjust to
whatever suits the mentors.In case of work delay due to personal or other reasons, I
assure you that I will work longer and efficiently to complete the backlog in the available
time. I plan on writing weekly progress blogs on my medium publication to establish a
systematic solution to prevent missing out on a week's work. I would be sharing the same
with my mentors while having active communication with them.

Timezone - Indian Standard Time (IST) - UTC+5:30

Email- sugurthimanisharma@gmail.com,secondary: ro200007@rguktong.ac.in

Phone - (+91) 9392521762

Linkedin - https://www.linkedin.com/in/manisharma-sugurthi

Github - https://github.com/sharma-sugurthi

Commitments and engagements during GSoC
If selected, I’ll be fully dedicated to the project. I have no prior commitments during the
span of May to September and will be able to provide 40+ hours a week to the project.

Post GSoC Plans
• I plan to harvest the experience and knowledge I will gain from GSoC and move

forward to making regular contributions to open source projects.
• I have been doing projects and uploading them publicly for a year now but wasn't

aware of the big community behind many of the tools I have been using.
• Also, I plan to help my juniors prepare for next year's GSoC, introduce them to

open source, and help them get a head start on projects my club mates and I have
worked on in GSoC.

https://github.com/sharma-sugurthi
https://www.linkedin.com/in/manisharma-sugurthi-222739213
mailto:ro200007@rguktong.ac.in
mailto:sugurthimanisharma@gmail.com

